An overview of true-color imagery products from space: ATS-3 to GOES-R

Don Hillger, PhD NOAA/NESDIS/STAR/RAMMB

Steven Miller, PhD CIRA/Colorado State University Fort Collins CO

> CORP Symposium Asheville NC 18 August 2011

True-color vs. RGB

- <u>True-color imagery</u> is obtained by adding/ combining the Red, Green, and Blue visible/ reflective images.
- <u>RGB imagery</u> can refer to many types of <u>false-color imagery</u> that are obtained by using RGB techniques to combine images <u>other than the Red, Green, and Blue images</u>.

True-color vs. False-color (both are RGB)

<u>True</u>-color (Red, Green, Blue) MODIS bands 1+4+3

> False-color / RGB MODIS bands 7+2+1 Also called <u>natural</u> color

True-color from geostationary orbit

- 1967—1974/5
 - MSSCC (Multicolor Spin-Scan Cloudcover Camera) on ATS-3 (Applications Technology Satellite)
 - (True-color was only available for the first 3 months.)
- ~2015
 - ABI (Advanced Baseline Imager) on GOES-R
 - (Green only as <u>synthesized</u> from Red, Blue, and Near IR bands)
- ~2014
 - Modified ABI on Japanese MTSat-3 (Multi-functional Transport Satellite)
 - (Green <u>directly</u> available, along with Red and Blue bands)

The **Multicolor Spin Scan Cloud Camera (MSSCC) on ATS-3** (launched 5 November 1967) produced striking portraits of entire continents such as this view of South America (~ 4 km resolution @ nadir)

True-color from polar orbit

- 1997 2010
 - SeaWiFS (Sea-viewing Wide Field-of-view Sensor) on SeaStar / OrbView-2 satellite
- 1999 present
 - MODIS (Moderate resolution Imaging Spectroradiometer) on EOS-Terra and EOS-Aqua satellites
- ~25 October 2011
 - VIIRS (Visible/Infrared Imager Radiometer Suite) to be on NPP and JPSS series satellites

Examples of **SeaWiFS** true-color images (Florida and Alaska, respectively)

Example of **MODIS** true-color Hurricane Karl, 2010-09-16 at 1720 UTC

Visible/reflective RGB bands on <u>current and future</u> satellites

	Geostationary				Polar-Orbiting	
	Current GOES Imager	Meteosat / MSG SEVIRI	GOES-R ABI	MTSat-3 Modified ABI	EOS MODIS	NPP VIIRS
Red	Red	Red	Red	Red	Red	Red
Green				Green	Green	Green
Blue			Blue	Blue	Blue	Blue

Missing Green band:

This is the challenge for generating high-temporal resolution true-color imagery over the U.S. for the foreseeable future.

GOES-R ABI Bands

	ABI Band	Central Wavelength (µm)	Wavelength Range (µm)	Band Explanation	Spatial Resolution (km) @ nadir
	1 (blue)	0.47	0.45 - 0.49	Visible/reflective	1
2	X (green)	0.55	Synthesized	Visible/reflective	1
ļ	2 (red)	0.64	0.59 - 0.69	Visible/reflective	0.5
2	3	0.865	0.846 - 0.885	Reflective	1
	4	1.378	1.371 - 1.386	Cirrus	2
	5	1.61	1.58 - 1.64	Snow/ice	1
	6	2.25	2.225 - 2.275	Particle size	
	7	3.90	3.80 - 4.00	Shortwave IR window	
	8	6.19	5.77 - 6.6	Water vapor	
	9	6.95	6.75 - 7.15	Water vapor	
5	10	7.34	7.24 - 7.44	Water vapor	
5 2	11	8.5	8.3 - 8.7	Water vapor, SO ₂	2
2	12	9.61	9.42 - 9.8	Ozone	-
	13	10.35	10.1 - 10.6	Longwave IR window	
	14	11.2	10.8 - 11.6	Longwave IR window	
	15	12.3	11.8 - 12.8	Longwave IR	
	16	13.3	13.0 - 13.6	Longwave IR	

<u>Reflective</u> bands

<u>Emissive</u> bands

How do we get true-color from GOES-R ABI?

- One method: put GOES imagery <u>over a true-</u> <u>color background</u> (as demonstrated on NexSat website)
- Or: <u>synthesize</u> the Green band from the other ABI bands
 - Regression
 - Look-Up-Table (LUT)

(Either method is trained on available true-color imagery, such as MODIS, where ABI-equivalent bands are available, as well as the Green band.)

One option: Put GOES over a true-color background (from MODIS)

'GeoColor' imagery from the *NexSat* website. The color background is composed of images from NASA's blue marble (MODIS data), with current GOES visible and infrared data overlaid via dynamic transparency factors.

Problem: Background is static, and does <u>not</u> represent current conditions.

Green Look Up Table (LUT) creation and use for ABI

True Color for GOES-R ABI

- True color is the preferred format for basic satellite imagery presented at all circles (research, operations, and the general public) because of its intuitive appeal.
- Currently, only polar satellite systems offer true color capability, resulting in superb imagery but at poor temporal refresh.
- GOES-R series ABI's omission of the critical 0.55 μm (green) band precludes a native true color ability.
- A data fusion algorithm has been developed to '**synthesize**' the missing green band¹, allowing for approximate true color imagery from the GOES-R ABI.
- The algorithm has been demonstrated on NWP-based simulated ABI imagery².

¹ Miller et al., IJRS, 2011 (In Press)
² Hillger et al., JARS, 2011 (DOI:10.1117/1.3576112)

Our last GEO-based true color capability: ~1967 (!!) on NASA's ATS-3 satellite

Synthetic Green Algorithm

- Begin with a sensor (MODIS) providing Blue (B), Green (G), Red (R), and Near-Infrared (NIR; 865 nm) information
- 2. Create a **Look-Up-Table** of G reflectance as a function of B, R, and NIR based on a global dataset (pre-corrected for Rayleigh scatter)
- 3. Synthesis Step: Consult the Look-Up-Table with new Blue/Red/NIR to estimate G
- 4. Use B, R, and the estimated G to produce a true color image

Comparisons

Comparisons

Approx

Comparisons

Class-Dependent LUTs

Green synthesis using available visible/reflective bands 1

Green synthesis using available visible/reflective bands 2

Schematic for generating missing (synthetic) Green and RGB images for GOES-R ABI

Step 1: <u>Green</u> from Red, Near-IR, and Blue bands, using a MODIS-trained LUT*. Step 2: <u>**RGB**</u> from Red, Green, and Blue bands.

*Synthetic-Green is produced using a Look Up Table (LUT) trained on MODIS imagery, which includes the necessary Red, Green, Near-IR, and Blue bands.

Simulated **Advanced Baseline Imager (ABI)** data from GOES-R turned into true-color imagery by synthesizing the Green band from the Red, Blue, and Near-IR bands of ABI.

VIIRS on NPP / JPSS

- True-color imagery will be <u>directly</u> available (No need for Green synthesis)
- VIIRS imagery can be used as <u>training data</u> for improvements to Green synthesis for GOES-R ABI

VIIRS Bands and Bandwidths

VIIRS Band	Central Wavelength (µm)	Wavelength Range (µm)	Band Explanation	Spatial Resolution (m) @ nadir	
M1	0.412	0.402 - 0.422			
M2	0.445 0.436 - 0.454				
M3 (blue)	0.488	0.478 - 0.488	Visible		
M4 (green)	0.555	0.545 - 0.565			
M5 (red)	0.672	0.662 - 0.682			
M6	0.746	0.739 - 0.754	Noor ID		
M7	0.865	0.846 - 0.885	Inear IK	750 m	
M8	1.240	1.23 - 1.25			
M9	1.378	1.371 - 1.386	Chartword ID		
M10	1.61	1.58 - 1.64	Shortwave IK		
M11	2.25	2.23 - 2.28			
M12	3.7	3.61 - 3.79	Madium waya ID		
M13	4.05	3.97 - 4.13	Medium-wave IK		
M14	8.55	8.4 - 8.7			
M15	10.763	10.26 - 11.26	Longwave IR		
M16	12.013	11.54 - 12.49			
DNB	0.7	0.5 - 0.9	Visible	750 m across full scan	
I1 (red)	0.64	0.6 - 0.68	Visible		
I2	0.865	0.85 - 0.88	Near IR		
I3	1.61	1.58 - 1.64	Shortwave IR	375 m	
I4	3.74	3.55 - 3.93	Medium-wave IR		
15	11.45	10.5 - 12.4	Longwave IR		

True-color imagery is not just a pretty picture!

- Ocean color analysis has used true-color for years, to determine <u>ocean/coastal health</u>.
- Color imagery is indicative of <u>vegetation extent and</u> <u>drought monitoring</u>.
- Color also extends into the analysis of <u>aerosols</u>, such as <u>smoke and ash</u>, and <u>airborne particulates</u> like <u>dust</u>.
- Modeling of <u>ash plumes</u> into realistic imagery, leads to understanding of its detectability.

Example of a <u>simulated ash plume</u> overlaid on simulated ABI imagery, as seen in true-color

synthetic-RGB – Rayleigh-corrected – log-enhanced

Natural Color Imagery of Tropical Cyclones: Algorithms that create natural color imagery over tropical cyclones has been created for the GOES-R Proving Ground (PG) demonstration at NHC. These natural color images are created using adjacent MODIS granules, have a Rayleigh correction applied, are remapped to a 2-km Mercator projection and are posted on the RAMMB TC-Realtime website (<u>http://rammb/products/tc_realtime/</u>) along with other TC products.

